
Team Epoch IV
www.teamepoch.ai

Delft University of Technology
Batch 2

Kelp Wanted: Segmenting Kelp Forests

Help researchers estimate the extent of Giant Kelp Forests by
segmenting Landsat imagery.

Engineering team:

Cahit Tolga Kopar
Emiel Witting
Hugo de Heer

Jasper van Selm
Jeffrey Lim

February 22, 2024

https://www.teamepoch.ai/
https://www.linkedin.com/in/cahit-tolga-kopar-344075222/
https://www.linkedin.com/in/emiel-witting-3b515a290/
https://www.linkedin.com/in/hugo-de-heer/
https://www.linkedin.com/in/jaspervanselm/
https://www.linkedin.com/in/jeffrey-si-hau-lim/


1st Place Solution

Summary
This section contains a summary of our first-place solution and what we did to achieve this amazing

result for us.

• Set all NaN values (-32,768) to 0.

• Feature engineering (NDVI, NDWI, ONIR, and many more varied features calculated on NDVI,
such as edge detection, contrast enhancement).

• Slight Gaussian blur on targets with 𝜎 = 0.5.

• Fit XGBoost model on all features where it’s predictions are used as a new feature to a DL model.

• Feature election selection step(Selection from all features and XGBoost outputs).

• Fit a StandardScaler.

• Models.

– Architectures.
* VGG-based UNet architectures (From Segmentation-Models-Pytorch)
* Swin Transformer (SwinUNetR) based architecture (From Monai)
* ConvNext architecture from Pytorch Image Models (timm)

– Epochs: 75.
– Batch size 16.
– Layerwize learning rate decay (for ConvNext at 0.851).
– AdamW optimizer.
– Cosine learning rate decay scheduler with 5 epoch warmup.
– Weighted FocalDiceBoundary and Dice loss

• Augmentations

– 90-degree rotations (Random choice between 0, 90, 180, 270 per image, 𝑝 = 1.0).
– Horizontal flip (𝑝 = 0.5)
– Mosaic and Cutmix augmentations (20% chance of applying either to an image in a batch, no

overlap).

• Test-time augmentations of all flip and n*90 degree combinations (8 combinations total).

• Custom ensemble selection with weighted averaging on raw model logits.

• Fitting threshold after weighted ensembling on the validation set maximizing dice score.
1The implementation was architecture-independent, so the counting of layers, and thus scale of the decay, might not be

consistent.

1

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/Project-MONAI/MONAI/blob/dev/monai/networks/nets/swin_unetr.py
https://timm.fast.ai/
https://github.com/LIVIAETS/boundary-loss


1.1. What didn’t work 2

What didn’t work
• Weighted dice loss by multiplying by the amount of kelp within a batch.

• Removing ill-labeled images from the training dataset (5635 -> 5620).

• Stacked ensembling (using a UNet / DL architecture for ensembling that is trained on all model
predictions)

• Retraining the segmentation head for more epochs after freezing all other layers.

• Prithvi model.

• TorchGeo models. (They worked, but limited us to architectures that were less performant)

• YOLO for segmentation.

• Any loss function that doesn’t use DiceLoss (Such as BCE).

• Setting channel ranges that are outside valid kelp ranges2 to 0.

• Clipping channel ranges to valid kelp ranges.

• Dithering as a postprocessing step.

• EfficientNet (overfitted very quickly).

• Applying other Test Time augmentations such as contrast / brightness.

What we haven’t tried
This section contains some interesting approaches that we have not tried, but we might think they

would lead to further improvements.

• Upscaling of satellite images.

• Using Deep learning techniques to fill in NaN data.

• Using classic techniques to fill in NaNs (using kNN imputation/interpolation).

• Trying different scalers (Normalization, MinMaxScaler etc..)

• Tuning the threshold for submit to match kelp distribution on training data.

Code
The code and documentation is available on GitHub. The configurations describing the ensembles

and models completely can be found in the ‘/conf‘ folder. GitHub

Introduction
To start off, we would like to thank the organizers and DrivenData for organizing this competition.

We as Epoch IV were hoping that we would be in the top 3 when the private scores were published and
it came as a surprise seeing that we were 1st place. Not only that but seeing 9 of our submissions are
actually winning submissions was even more unexpected.

2Valid kelp ranges: The range (min, max) of band values where there is a possibility to find kelp. For this, we looked at
distribution plots on bands in which ranges of values kelp is encountered or not.

https://github.com/TeamEpochGithub/iv-q2-detect-kelp


1.5. Features 3

Figure 1.1: All our submission that get 1st place on private leaderboards

Features
To visualize our features and analyze how well our models perform, we have built a visualization

dashboard with Dash in Python. During our EDA, we found out that the NIR channel has a very high
importance for predicting kelp when looking at the kelp distribution ranges for each channel. From this
channel, we created other new features such as NDVI which is used to quantify vegetation greenness
and more. Also, from this NDVI we calculated different new features using filters such as contrast
enhancement, edge detection using Sobel, sharpening, and a modal filter. These can be observed in the
figure 1.2 below.

Furthermore, we fitted XGBoost on all of these features and used the predictions of the XGBoost
model as a new feature for the deep learning model later on. Then we applied feature selection to select
the most meaningful features and applied a standard scaler.

Figure 1.2: The features that we have used for our models. (The kelp overlay uses an RGB image)

Loss Functions
For the choice of the loss function, we initially went with Dice loss since it is the metric. After some

research, we saw that other loss functions like Jaccard loss, BCE, and Focal loss were being used for
segmentation. After doing many test runs with a Weights and Biases sweep for loss we found that dice
loss was the best.



1.7. Threshold 4

Figure 1.3: Comparison of different loss functions and the CV scores they get for a subset of 1000 images. It shows that Dice loss
consistently results in the highest scores

During the last week, however, we came across a new loss function called focal dice boundary loss
that was used in the winning solution of a Kaggle competition for image segmentation. When training
models using dice loss with an 80%-20% split for train and validation sets our models would early stop
around 60-65 epochs. What we noticed is that the validation loss with this new loss function was more
stable in comparison to dice loss and it would not early stop in 75 or more epochs. This meant we could
train our models for longer and this also resulted in better validation scores (The scheduler for these
models were also changed to decay to 0 in 100 epochs instead of 75).

Figure 1.4: Comparison of vgg model scores for dice loss vs focal dice boundary loss

Figure 1.5: Comparison of vgg model training losses for dice loss vs focal dice boundary loss

Figure 1.6: Comparison of vgg model validation losses for dice loss vs focal dice boundary loss

Threshold
Since the expected output is a binary mask the model outputs have to be converted from probabilities

to binary with a threshold. We have used threshold optimization which leads to an increase in score for

https://github.com/LIVIAETS/boundary-loss


1.8. TTA (Test-time Augmentations) 5

individual models. However, when models are ensembled this noise in the predictions is filtered out
(this is also the case for a single model with TTA), and fitting a threshold results in values in the range
0.51-0.49. We simply chose to use 0.5 for all our ensemble submissions.

TTA (Test-time Augmentations)
Since satellite images can be in any orientation and CNNs are position-dependent, ie. if the image

is flipped vertically, a prediction is made and flipped back it will give a different result compared to
making a prediction directly. Using all the unique combinations of flipping and rotating an image
in multiples of 90 degrees and averaging the results of the 8 combinations per image gives a slight
improvement in local scores. Our public LB scores for one of our ensembles also went from 0.7196 to
0.7200. After seeing this TTA was included in the rest of the submissions.

Figure 1.7: The improvement on the leaderboards scores of using TTA

HPO
For doing hyper-parameter optimization we used Weights and Biases sweeps. From the sweeps, we

came to the following conclusions:

• Batch size of 16 works the best

• Vgg encoders give high scores more consistently

• Unet(plusplus) decoder works the best

• Learning rates in the scale of 1e-3 work the best

Figure 1.8: Results from the Weights and Biases sweep where runs with batch size of 16 are show. Note that these runs do not use
all the features shown in figure 1.2

Ensembling
Combining models

For ensembling, we have tried multiple approaches such as majority voting, stacking ensemble and
weighted average. From these methods, the weighted average of the predictions gave us the best overall
scores both locally and on public LB.

Selecting models
For an ideal ensemble we combine models that are not only accurate by themselves, but make errors

in different ways, so they can complement each other. Initially, we chose our ensembles by taking
models with high 5-fold CV scores, and judging the variety by looking at their configuration. Variety
was mostly in feature selection and encoder architecture. Later, we experimented with automated
ensemble selection methods.



1.10. Ensembling 6

We used three algorithms to optimize the model selection and weights, based on model predictions
on a validation set and labels.

• Genetic algorithm for optimizing Dice score from model weights. As a regularization method to
prevent overfitting, the amount of possible values for the weights could be reduced. We ended up
allowing the values 0,1, and 2 (before normalizing the weights across the ensemble to sum to one).

• Linear regression to optimised MSE. This works, but will result in every model being used, which
not preferred for performance reasons. It can also produce negative weights, which we found to
usually not be reliable when transferring to a different dataset.

• Combinatorial optimisation of MSE. Using optimizations we could very quickly evaluate the
MSE for an unweighted binary selection of models. This allowed a brute-force search of all 2𝑁

combinations.

We also generated visualizations, to make more informed manual selections. It was possible to
directly show the concept that an ensemble should contain models that approach the target from
different directions. This was done by comparing the correlation of the errors (prediction minus target)
between models. This roughly corresponds to the angle between models. Then, we could project this
correlation using PCA and show the most significant components. Figure 1.9 shows this plot for 3D.
It becomes clear that similar models are clustered together, and that the automated selection method
chooses the highest scoring model from each cluster, to achieve a well-rounded ensemble.

Figure 1.9: PCA of model errors, labeled by configuration and individual dice score. The red markers are models chosen by
binary ensemble optimization, and the purple point (near the origin, so close to zero error), is the error of the ensemble.

To further aid in understanding model variety, we used hierarchical clustering to create a dendrogram
using the model error correlation. This successfully clustered similar models, and made it clear which
changes (architecture, features, etc.) make the biggest difference in model variety. See figure 1.11

These techniques were promising already, but would probably benefit a lot more from optimizing
cross-validated predictions. They were applied to only a 20% validation set, and the methods might be
prone to overfitting.



1.11. Hardware 7

Figure 1.10: Dendrogram based on hierachical clustering using error correlation. The "1x" and "0x" signify the model weights as
chosen by the ensemble optimisation process.

Hardware
The hardware that was available to us during the competition was 2 workstations with 2 A5000

GPUs and 1 workstation with 2 A6000 GPUs. All with 128GB of RAM. However, we also had access to a
DGX cluster (8 H100 GPUs) for a week during the second half of the competition. This allowed us to
run 5-fold CV sweeps without subsampling the dataset as shown in figure 1.8.

Pipeline
The figure below shows our overall pipeline visualized in a diagram.



1.12. Pipeline 8

Figure 1.11: Our machine learning pipeline for detecting kelp.


	1st Place Solution
	What didn't work
	What we haven't tried
	Code
	Introduction
	Features
	Loss Functions
	Threshold
	TTA (Test-time Augmentations)
	HPO
	Ensembling
	Combining models
	Selecting models

	Hardware
	Pipeline


