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Preface
We’ve kicked off the year with tremendous momentum, securing the 23𝑟𝑑 position on the leaderboard

with an impressive score of 0.816. We have learned a great deal from this competition about everything
from data processing to hyperparameter optimization. This comprehensive report aims to dissect both
our missteps and successes, providing a roadmap for future teams to excel in upcoming competitions
by learning from our experiences and steering clear of avoidable mistakes.

This paper presents the outcomes of our team’s participation in the recent competition focused on
the detection of sleep onset and wake periods using wrist-worn accelerometer data. The objective was
to develop a model that could reliably determine an individual’s sleep state based on nuanced patterns
in the accelerometer recordings.

Sleep monitoring is a crucial aspect of healthcare and well-being. Our research addresses the
challenge of creating a robust model capable of accurately discerning sleep onset and wake periods.
Leveraging wrist-worn accelerometer data, we aimed to contribute innovative solutions to improve the
precision of sleep state detection. The work enables researchers to conduct more reliable, larger-scale
sleep studies across a range of populations and contexts. The results of such studies could provide even
more information about sleep.

The successful outcome of this competition can also have significant implications for children and
youth, especially those with mood and behaviour difficulties. Sleep is crucial in regulating mood,
emotions, and behaviour in individuals of all ages, particularly children. By accurately detecting
periods of sleep and wakefulness from wrist-worn accelerometer data, researchers can gain a deeper
understanding of sleep patterns and better understand disturbances in children.
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1
Embarking on a Journey

It is the start of the year and we need to select our first competition. How do we actually do
this? We start scanning all popular AI competitions hosting platforms for competitions. Then we
create a long list where we evaluate the competitions according to the following criteria: Our sustain-
able Epoch Goals, Timeline, Prize/Popularity, Educational Value, Originality and Feasibility. After
creating a method of selecting a competition, the process of selecting the current competition was started.

Five competitions made it into the shortlist. The first two were City Learn Challenges. These
competitions were about energy and temperature control and forecasting. These were not selected
due to being too similar to previous competitions and the code not being able to run within 2 days. A
third option was the Google – Fast or Slow? Predict AI Model Runtime competition on Kaggle. After
some days of research, the conclusion was that this competition would be too hard to do with limited
experience and understanding of the topic. For the fourth competition, the Melting Pot Challenge was
selected. This competition was about creating a reinforcement learning agent that could cooperate in
multiple environments and scenarios. This was not selected due to reinforcement learning agents being
very hard to train and taking a lot of time although this was a good second option.

During the research phase a new competition opened, the Child Mind Institute - Detect Sleep
States competition. In this competition, participants had to detect sleep onset and wake-up based on
accelerometer data. It was chosen as the knowledge required was less than other competitions so it was
deemed the best option for the first competition.

This report aims to share our findings during the competition, highlighting major problems, what
went well and how teams can improve in the future. The first two chapters will go over the planning and
research phase, sharing the teamwork processes used and how the research was conducted. Research
consisted of several parts: exploring the data and performing analysis; doing research on models; and
how the submissions and scoring work on Kaggle.

Following the planning and research phase, most other aspects were done throughout the project.
Data processing was a very important part of this competition and we started by setting up a data
pipeline to reduce memory, add features and downsample the data. Four models were created which
included: UNet, a transformer encoder, GRU, and a spectrogram. Out of these four, three were eventually
used in the ensemble. During the competition, multiple approaches were thought out on how to make
predictions such as regression or segmenting the series on asleep state.

These models using the approaches had to be trained and there were a lot of improvements made to
speed up and stabilize training. One of these was finding a good loss function and making sure the
models do not overfit. After training the models can make predictions which are then postprocessed
using some methods to improve the score with sinc interpolation, offsetting the prediction and others.

1

https://www.aicrowd.com/challenges/neurips-2023-citylearn-challenge/problems/forecasting-track-citylearn-challenge
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https://www.aicrowd.com/challenges/meltingpot-challenge-2023
https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/
https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/


2
A Blueprint for Achievement

2.1. Phases
At the start of the competition, it was decided to split it into 4 phases: Research, Baseline, Improvement,

and Optimisation. The research, baseline and optimisation phases were two weeks and the improvement
phase was six weeks. The research phase mainly focused on getting familiar with the state-of-the-art
models in the field of the competition. Furthermore, an exploratory data analysis was done to inspect
the data we are working with. This setup worked well until halfway through the baseline phase. Almost
a day into the baseline phase a simple model was already created and already started being improved.
The amount of time required to get to a baseline was therefore overestimated and for most competitions,
especially on Kaggle can be done a lot faster. After this, following the phases seemed unnecessary so it
was decided to throw it away and work more iteratively.

2.2. Workflow
Working in sprints seemed the best way to approach the workflow and to use an issue board. At the

start, a sprint was one week with a start on Tuesday and a reflection on Monday. Having the reflection
and a sprint startup separate was not very efficient so they were combined into a one-and-a-half-hour
meeting on Tuesday morning called the sprint-storm. We found that having a meeting one time a week
was very little as a lot of new information was discovered throughout the week. To work with this an
emergency meeting idea was introduced where we could have a meeting after lunch if we needed to
share important information. In actuality, we hardly ever used this concept and mainly had discussions
when needed. This is something that could be improved in the future as often not everyone knows the
newest findings but sometimes it is also not necessary. Finding a balance between sharing information
with another member or the entire team is something that should be worked on in the future.

Next to working in sprints, we created issues to manage and assign tasks, using the GitLab platform.
Issues worked well during the programming phase but not a lot during the final stages of the competition.
This is mainly because throughout most of the competition, we had code or research deliverables but at
the end, we were only trying out new combinations and hyperparameters using our existing code base.
Each issue had labels and a weight/time estimate assigned to get an overview of how long each one
would take. A burndown chart was not very useful as often we created issues in the middle of sprints
due to issues popping up or good new ideas that had to be tried out instantly.

2.3. Code Quality
To ensure a high standard of code quality, we adhered to multiple principles. Firstly, at the start of

our baseline phase, we set up a GitLab continuous integration (CI) pipeline that ran style checks and
unit tests. This pipeline was run for every merge request, so we made sure that our main branch was
kept clean. For style checks, we used the Flake8 package which prevents things like syntax errors, typos,
bad formatting, and incorrect styling. Everyone had to make sure their code was clean since this was
enforced in the pipeline. Everyone also had SonarLint as a plugin installed locally, which also caught

2
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2.4. Testing 3

some code smells. There is also a cloud option of SonarLint so that we could run it on the GitLab CI,
but that was quite an expensive plan so the team decided not to invest in that.

2.4. Testing
When developing our code, we mainly wrote unit tests for complex functions that also helped us

debug. In the initial stages of the competition, the team expressed the desire to implement automated
integration and system tests. However, this aspiration presented a significant challenge: hosting our
complete dataset online would demand considerable time and computational power. Therefore, the
team decided not to make any integration and system tests, but to only make unit tests. To write the
tests, the "unittest" package in Python was used which made it very straightforward to start creating
unit tests. During development, we could have made our code more modular for increased testability
because we had some parts of the code that were dependent on each other which made it hard to test
individually.



3
Breaking New Ground

3.1. Exploratory Data Analysis
At the beginning of the research phase, an exploratory data analysis was made using Jupyter

Notebooks. Here are some interesting statistics that were observed in the data:

• In total, sleep was recorded for 277 different people with an average of 26 night per person.

• 34% of the data are NaNs. Only 11% of the series did contain no NaNs at all.

• Multiple series that had data that looked like normal sleeping behaviour were unlabeled.

• There were 3 occurrences where there were multiple onset events after each other in the data,
which is illegal. Every onset should be matched by a wakeup. This was later fixed in a new dataset
released by the competition host.

Figure 3.1: Average onset and wakeup times of all persons in the data

After the EDA, the team knew that they were up for a challenge mainly due to the labelling
inconsistency and many NaN values that had to be handled by the models. NaNs were intentionally left
in by the competition organizers since they could represent people not wearing the watch for example.
Also, a lot of series were unlabelled and looked like they contained normal behaviour. An example can
be seen below, where parts of the series has been annotated; Labelled means this part of the series was

4
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annotated with sleep onset or awake labels. NaN was not labelled and unlabelled in green shows parts
of the sequence at the end that were also totally unlabelled. The orange segments actually look like
normal sleeping data, but here we can observe that there were not labelled at all for these periods in the
series.

Figure 3.2: AngleZ feature of improperly labelled series.

3.2. Existing solutions
Before we start thinking of solutions, it is very important that we understand why this is a competition

in the first place. It means that there are major limitations to existing solutions, which is where the
challenge lies.

The gold standard for detecting sleep stages is polysomnography (PSG). This requires a patient to
be connected to various devices on multiple location on the body. Not only will this disturb the sleep
in and of itself, but it is especially troublesome with children, especially those who already may have
trouble sleeping.

A different solution to detect sleep is to use a smartwatch. Research has shown that modern
smartwatches can be almost as accurate as PSG in detecting sleep onset and wakeup times. One problem,
however, is that these smartwatches are equipped with more advanced sensors. Modern smartwatches
can not only detect motion with both an accelerometer and gyroscope, but they can also detect heart
rate, blood pressure, snoring, respiratory rate, and even skin temperature. Because of these sensors, they
are a lot more expensive than simple actimeters, which only have an accelerometer. Another problem is
that these smartwatches use proprietary software for detecting sleep, which is not freely available to
scientists.

Scientists have made efforts in using actimeters with an accelerometer only. The state-of-the-art
algorithm for processing wrist-worn accelerometer data is the HDCZA algortihm. Not only has this
only been tested on adults, but it is also not accurate enough and does not deal well with periods of
non-wear.

Based on this, we know that the challenge lies in only having accelerometer to work with, and
dealing with messy data. Especially the messy data is what we should put our focus on during the
competition.

3.3. Domain Research
Obtaining more domain knowledge can potentially give you the winning edge in an competition.

Most participants are so focused on finding the best models, which is important too, but domian
knowledge can be just as important.

3.3.1. About Sleep
We performed some research on sleep in general. We found information about recommended and

average amount of sleep, about circadian rhythms, and sleep in children. We did not find that much
useful information in this regard.

3.3.2. About the Demographic
Researching how the data was collected and with what demographic proved to be more useful. We

started with doing more research on Child Mind Institute and the Healthy Brain Network (HBN), the
initiative for creating a huge open biobank of medical data from children. We found that CMI only has

https://doi.org/10.13078/jsm.230004
https://doi.org/10.13078/jsm.230004
https://dx.doi.org/10.1038/s41598-018-31266-z
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locations in New York, which makes it very likely that the patients the data was collected from also live
in New York. This proved to be quite useful; more on that later.

We also found the specific study for which HBN collected the data. It’s called the Rythms & Blues
study and more information about that can be found on the HBN webiste. The most important result for
us was that we found out that the participants of this study are teenagers from ages 11-14 with various
sleep disorders. We also found out that children are supposed to log their sleep themselves using the
MindLogger app, which would explain the low quality of the labels.

3.4. Similar competitions
Looking at similar competitions was a good way of starting the competition by looking at the models

and approaches used there and then continuing to research those. One competition was found that
was very similar to this competition and was researched intensively, the Parkinson’s Freezing of Gait
Prediction. The goal of that competition was to detect the freezing of gait from data collected by a 3D
lower back sensor. Since the data was also accelerometer data and participants had to find changes in
acceleration to segment time series acceleration data, models used for this competition would probably
be very applicable to the current one. The first place solution used a combination of a transformer
encoder with two bidirectional LSTM layers, patching and reducing the resolution of targets. For the
second place solution, the participants used an ensemble of GRUs. Lastly, the rest of the solutions were
similar to the first two except the sixth which used a combination of spectrograms, wavelets, UNet,
ResNet and transformers.

3.5. Transformers
After finding that transformers were used in similar competitions previously, more research was

done into them, specifically transformers applied to time series data. From the research, it was found that
transformers were often used for time series forecasting such as in stock prediction. This was because
the encoder-decoder structure is good at predicting values based on input. To use the transformer for
the current application, the decoder part had to be cut off and replaced with a linear layer or something
else such as a bidirectional LSTM layer.

3.6. Semi-supervised training
Another technique that was researched was semi-supervised training. Looking at the data, a lot

of unlabeled segments were discovered that did not look like it was unlabeled due to non-wear. A
possibility to get more data was therefore to use semi-supervised training. A couple of techniques and
methods found were: Mean Teacher, Virtual Adversarial Training, MixMatch and LadderNet. These
techniques were eventually not used due to time constraints but may have been successful.

3.7. Sequential Neural Networks
In the research phase, we already figured out that sequential neural networks were very promising

for this competition due to the data being sequential and having a time dependency. During this
research, we looked at 3 types of architectures: Recurrent Neural Network (RNN), Gated Recurrent Unit
(GRU), and Long Short-Term Memory (LSTM).

3.7.1. Recurrent Neural Network
RNN is a type of artificial neural network designed for processing sequential data. Unlike traditional

feedforward neural networks, that multiply the current input layer by the weight matrix, RNNs use
hidden states that captures information about previous inputs in a sequence. This hidden state enables
RNNs to model dependencies and patterns in sequential data, making them well-suited for tasks
involving time series data, natural language processing, and other sequential data types.

Limitations
In essence, RNNs excel in tasks where the order and context of the data matter, making them a

fundamental tool in various fields of artificial intelligence and machine learning. However, they do have
limitations, such as difficulties in capturing long-term dependencies, which has led to the development
of more advanced recurrent architectures like LSTM and GRU networks to address these issues.

https://healthybrainnetwork.org/participate/other-studies/
https://www.kaggle.com/competitions/tlvmc-parkinsons-freezing-gait-prediction
https://www.kaggle.com/competitions/tlvmc-parkinsons-freezing-gait-prediction
https://www.kaggle.com/competitions/tlvmc-parkinsons-freezing-gait-prediction/discussion/416026
https://www.kaggle.com/competitions/tlvmc-parkinsons-freezing-gait-prediction/discussion/416057
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Recommendation that arose from research
RNNs are not performing that well on long sequences, because of the vanishing/exploding gradient

as seen below in the figure. Therefore, we would recommend to use patching (step segmentation) and
aim to create smaller sequences, possibly splitting up series of multiple days into smaller ones of 1-5
days. In this way, we keep the sequence length manageable, and the network is able to learn better and
suit this task well.

3.7.2. Gated Recurrent Unit
GRUs are a type of recurrent neural network (RNN) architecture designed to model and analyze

sequential data efficiently. They were introduced as a simpler alternative to Long Short-Term Memory
(LSTM) networks, another type of RNN. GRUs are known for their effectiveness in capturing short- to
medium-term dependencies in sequential data while having a more streamlined architecture. Gating
Mechanisms: GRUs use gating mechanisms similar to LSTMs, but with a simplified structure. They
have two gates: an update gate and a reset gate. These gates control the flow of information through
the network, allowing GRUs to selectively update the hidden state and handle different time steps in a
sequence. Hidden State: Like LSTMs, GRUs have a hidden state that can capture information from
previous time steps in the sequence. This hidden state can be thought of as a memory that retains
relevant information over time.

Limitations
• Limited Capacity for Capturing Long-Term Dependencies GRUs. Like other recurrent neural

networks, may struggle to capture very long-term dependencies in sequential data. While they
are designed to mitigate the vanishing gradient problem, their capacity to store and retrieve
information from distant time steps is still limited compared to more complex architectures like
Long Short-Term Memory networks.

• Sensitivity to Hyperparameters. The performance of GRUs can be highly sensitive to hyperpa-
rameters like the number of units, layers, and learning rates. Finding the right hyperparameter
configuration can be a time-consuming and sometimes challenging process.

• Difficulty Handling Variable-Length Sequences. GRUs, like most RNNs, are designed to work
with fixed-length input sequences. Dealing with variable-length sequences often involves pre-
processing steps such as padding or truncation, which can introduce inefficiency and additional
complexity into the modeling pipeline.

Recommendation that arose from research
GRUs are definitely very suitable for this task, mainly because they excel in capturing short- to

medium-term dependencies in sequential data. This fits well with the data that we have, which I would
classify as short - medium length as well. A lot of submissions used GRUs in similar competitions, such
as the Parkinson Freeze of gait one.

3.7.3. Long Short-Term Memory
An LSTM is a type of RNN architecture designed to overcome some of the limitations of traditional

RNNs. LSTMs are specifically engineered to better capture and manage long-term dependencies in
sequential data. They achieve this by introducing a more complex internal structure called a "memory
cell" that can store and retrieve information over extended sequences, making them highly suitable for
tasks involving sequential data.

Limitations
LSTM cells have some drawbacks when compared to simple RNN cells. They are more computation-

ally expensive and require more memory and time to train and run due to their additional parameters
and operations. Additionally, they are more prone to overfitting, necessitating regularization techniques
such as dropout, weight decay, or early stopping. Finally, they are harder to interpret and explain than
simple RNN cells since they have more hidden layers and states.
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Recommendation that arose from research
Recommendation LSTMs are very suited for this problem since they could support longer time

series due to not having big problems due the vanishing gradient for long series. We have to watch out
for the fact that they might be harder to configure correctly and are more computationally expensive.

3.8. Convolutional Neural Networks (CNN)
We thought that CNNs could be a viable approach due to CNNs having convolutional layers that

can handle spatial information available in images and sensor data. Therefore we looked at two types of
CNNs, 1D-CNNs that work on sensor data and 2D-CNNs that work on image data such as spetrograms.

3.8.1. 1D-CNN
We researched that 1D-CNNs are useful for time series since they can take sequential data as input

and use convolutions to learn sleep schedules and predict which state the series is in. Here we thought of
multiple approaches, where the first one is state segmentation where the model outputs the probability
of being in states 0, 1 and 2. Where 0 means asleep, 1 means awake and 2 is unlabelled / NaN (we don’t
want to make a prediction here). Then we could further post-process this to find the transitions from 0
-> 1 being a wakeup event and 1 -> 0 being a sleep onset event. We found a 1D-Unet architecture online
here that we started to use as one of our baselines which already performed quite decently.

3.8.2. 2D-CNN
The main application of 2D CNNs on sensor data is to convert the sensor data to 2d spectrograms,

similar to audio classification and speech recognition tasks. The difference between that case and
our case is that for audio applications either 44.1kHz or 48kHz is used for sampling frequency. So
48000 samples is equivalent to 1 second. In our case the sampling frequency is 0.2 Hz so for us 48000
samples equates to 240000 seconds (66h40m). So the classification/segmentation methods used for
audio applications are not directly applicable to our data. Still we could use large overlap between
windows at the cost of computation time to provide better time resolution in the spectrogram and help
preserve more temporal information.

3.9. Kaggle submission and scoring
Probably the most important thing to understand about the competition is the scoring metric. If we

understand the scoring metric we can use it to our advantage. To this end we spent several days looking
into the scoring metric code. The scoring is based on a complicated implementation of the area under
the precision recall curve (see 8.1 and plot-precision-recall).

The precision-recall curve shows the trade-off between precision and recall for different threshold.
A high area under the curve represents both high recall and high precision, where high precision relates
to a low false positive rate, and high recall relates to a low false negative rate. (plot-precision-recall).

Simply put this metric rewards or penalizes your predictions depending on how confident you are
with the use of different thresholds. If you make a prediction with high confidence and it is wrong, you
will be penalized more compared to making a wrong prediction with a lower confidence. This means
that making submissions with proper confidences instead of using a global confidence will have a huge
positive impact on the score since the predictions too far away from an event get penalized less.

https://www.kaggle.com/code/super13579/u-net-1d-cnn-with-pytorch
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#:~:text=The%20precision%2Drecall%20curve%20shows,a%20low%20false%20negative%20rate.
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#:~:text=The%20precision%2Drecall%20curve%20shows,a%20low%20false%20negative%20rate.


4
The Engine Room: Data Processing

4.1. Preprocessing
4.1.1. Memory reduction

Memory reduction was an important part of this competition as the original data set was very large
and since a notebook had to be submitted with limited memory, to create a successful submission,
memory usage had to be reduced. Some columns were using more memory than what was required
such as step, enmo, anglez and timestamp. Reducing these to the minimum value needed decreased
our memory by 90%. Additionally, each series was saved separately in parquet files so the series_id did
not have to be stored in a column, resulting in an additional decrease in memory usage.

4.1.2. Labeling
Since the targets and data were split into different files, a processing step was to combine them into

one file. This could be done in different manners which are examined below.

Event labels
The event labels are two columns where for each row 0 represents no event and 1 represents an

event. To help with the training and to predict multiple confidences, Gaussian smoothing is applied
to the column. This allows for easier training for the model as the label distribution is more balanced.
There are two parameters for this function, smoothing and steepness. Steepness represents how fast the
labels transition from 1 to 0 while smoothing represents how smooth the transitions between rows are.

State labels
For the state labels a state was added to each row/step of the data. The state had four options: 0 for

asleep, 1 for awake, 2 for NaN and 3 for unlabeled data. Adding these labels had three parameters. For
the first parameter, ’use_similarity_nan’ it used the similarity_nan column to fill in the correct state. The
next parameter, ’fill_limit’ was used for the maximum number of steps to fill in. Lastly, a NaN tolerance
window was used to calculate the number of steps to tolerate NaNs before filling in the state column.
An additional implementation of this was added that added the states in a one-hot encoding manner.

4.1.3. Splitting windows
Feeding all the data into a model is usually too much for a model to handle. Additionally, each

series is a different length, sometimes differing by multiple days or even weeks. To account for this we
decided to split each series into a certain window length. It was decided to split the series into windows
of length 17280 as this represented the number of timesteps in a day. The window start was set at 3 pm
as this was where the least amount of onsets and wakeups occurred as seen from the exploratory data
analysis.

4.2. Feature Engineering
Extracting features from the time series data resulted in significant improvements. We found features

partly by reasoning about the problem, and with a brute force search using a heuristic for feature

9
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importance.

4.2.1. Rotation
When interacting with the data, we found that anglez changes very infrequently when the subject

was asleep. Thus, taking the slope (diff) of anglez, then absolute value, then clipping it gave a very
useful feature. Smoothing the peaks of the result with a rolling median resulted in a mostly accurate
indication of a person being awake or asleep at a given point in time. As it relies on the change in angle,
we named this “rotation”.

4.2.2. Time
We extracted the features hour and minute from the timestamp. This proved useful according to our

feature importance analysis. Hour is an indication of sleep, as people generally go to bed and wake up
at similar times. This makes it easier for the model to infer when wakeups and onsets occur.

4.2.3. Non-wear detection (Similarity NaN)
We noticed that there is a repeating pattern in the non-wear periods, for which predictions should

not be made. Strangely enough, the pattern repeated perfectly for every 24 hours, although it was
different per child. To detect this, we computed the vector difference between each combination of
24 hour windows, then created a feature from the smallest difference at each time step. This distance
would be zero for points in the repeating pattern. As this value uses the similarity between every 24
hours, and indicated NaN/missing events, we named it Similarity NaN.

4.2.4. Sunlight
Knowing the data was recorded in New York, we can calculate the position of the sun and use the

azimuth and altitude as features. Since sunlight affects the circadian rhythm, it strongly correlates
to when people fall asleep and wake up. Because of this strong correlation, our scores increased
significantly with this feature.

4.2.5. Holidays
Since we can assume that the data was collected from 11-14 year old children in New York, we can

add all the middle and high school holidays as well. Unfortunately, it seemed to only decrease our score.

4.2.6. School Hours
Like with the holidays, since we can assume that the data was collected from 11-14 year old children

in New York, we can add the school times as a feature too. School hours are from 8:00-15:45 for middle
schools and high schools on Monday to Wednesday. For Thursdays and Fridays, high schools end at
16:20. Unfortunately, this feature did not increase our score.

4.2.7. Weather
With the timestamp as well as a longitude and latitude in New York, we used Meteostat to add

various weather features to the data. However, this gave us lower scores on average. It also required a
workaround for saving historical weather data, as our notebook had no internet access to the Meteostat
API.

4.2.8. Feature importance and selection
Besides these manually created features, we automatically generated more features and estimated

their importance. Generation was done by computing all combinations of rollings statistics (rolling
mean, median, var etc.) applied to each feature, with each of a range of window sizes. For some features,
the diff was also applied to create another. Selecting went as follows:

First, a feature’s usefulness was judged based on its ability to predict the awake/asleep state. A first
pass did this by fitting a logistic regression model on each feature separately, and scored the feature by
the model’s AUROC classification score. This gives a good indication of how the features perform on
their own.

Then, features were filtered. A loop iterated over features from highest to lowest score, and added
them to the selection, unless the correlation to any previously selected feature was too high. This

https://dev.meteostat.net/
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roughly halved the amount of features and improved the score in the next step.
To evaluate the usefulness when combining features in a model, Catboost was trained with the

selection to perform sleep/awake classification. Catboost, like most GBDT models, gives direct access to
the feature importance.

This process was repeated for two other problem settings. The first was a dataset consisting only of
small windows around ground truth transitions. The latter had event labels. Combined, this now gives
feature importance for: long-term state classification, short-term state classification, and event detection.
The same correlation pruning procedure was used on each. The final features were a manual selection
of the best of each category.

4.3. Pretraining
4.3.1. Downsampling

In the critical point notebook that used the GRU model, they downsampled the series to create
features, calculating statistical values of every 12 items like mean, median, and variance and using these
statistical values as the features the model is trained on. We have added some more methods to this
such as range min and max and used these for all our models. The downsampling factor of 12 gave the
best overall performance and was not changed.

All our final models ended up with a GRU model at the last layer, which meant we also had to
downsample our labels because a GRU model returns 1 result per time step in the input sequence. (The
GRU could not be made bigger due to memory limitations, and we did not use upsampling networks at
the output). For downsampling our labels, we tried two approaches:

• Subsampling: Taking the first label every 12 labels

• Median downsampling: Taking the median of every 12 item in the labels

Figure 4.1: Comparison of different label downsampling methods. The orange curve is the median downsampled and the green
one is subsampled labels for one event

From figure 4.1 we can clearly see that the median subsampling is skewed to the left and would be
expected to perform worse. However with some post processing the median downsampling ended up
giving us higher scores. (see 8.2.3)

4.4. Caching
The preprocessing, feature engineering steps, and pretraining can take a long time to run. To reduce

waiting times, we cache intermediate results files. While this does increase storage usage, it drastically
reduced waiting times. We use a hash of the configuration so we can detect when the configuration has
changed so that we know when it is appropriate to reuse the cached data or not.



5
Precision in Practice

5.1. 1D-UNet
A 1D Unet is a type of CNN that is effective for segmentation tasks where the goal is to classify

each step into a category. The downward arrows in the figure represent the contraction path of the
encoder part of the U-Net, where convolutional layers are used to capture the context of the input image.
The network learns features at various resolutions. The vertical bars could represent the feature maps
generated by each convolutional operation. Pooling layers (not explicitly shown) are typically applied
after each convolution to reduce the spatial dimensions of the feature maps.

The horizontal arrows represent skip connections where information flow from the encoder is
concatenated with later flow to the decoder. In this way, the network can use features learned at different
scales to improve precision.

The upward arrows increase the resolution of the feature maps, this means increasing the window
size while decreasing the number of channels by applying deconvolution. The output of the UNet
consists of the same window size where the model predicts the state of each step in a one-hot encoded
way where the number of channels is the number of classes to predict.

Figure 5.1: UNet Architecture diagram

5.2. Transformer Encoder
Research showed transformers had the potential for time series analysis and were therefore

implemented in our code and used during ensembling. Getting the transformer to work was quite

12
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difficult due to memory issues and starting with the wrong approach: regression. In this section the
final architecture created will be covered and some things to watch out for while using and training a
transformer.

5.2.1. Patching and memory usage
The transformer uses a lot of memory as the attention matrix uses 𝑂(𝑛2) space where n is the

sequence length. To circumvent this, the input data was patched. This meant that the sequence length
was divided by the patch size and the number of features per step multiplied by the patch size. After
the data was patched, it was fed through a linear layer to get the last dimension equal to the transformer
embedding dimension.

5.2.2. Encoder
A transformer usually consists of two parts, an encoder and a decoder. The decoder is special as it

can take previously generated output and combine it with the encoder input to generate new values.
This is very useful for LLMs and forecasting problems. Since we are doing segmentation in the current
competition, the decoder part is not as useful and was therefore cut out. The encoder architecture can
be seen in figure 5.2.

Figure 5.2: Transformer encoder.

Positional Encoding
To allow the transformer to get a better insight in the positions of features in the data, a positional

encoding is added. There were multiple options that were experimented with during the competition:
Fixed, Learnable and Other. Fixed positional encoding ended up being the best and uses sine and cosine
values.

Attention
Another part of the transformer encoder is the attention calculation. This process is very memory

intensive so a large focus during the competition was to decrease the memory used. Research into
multiple attention types was done and the following were experimented with: Normal, Blocksparse,
and Bahdanau. These mostly performed the same but the memory usage of blocksparse was a lot less
and was therefore used in the final model.
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5.2.3. Residual model
After passing the data through the transformer it was summed with the original data. Once it was

summed it was passed through a bidirectional GRU which is fully explained in section 5.3. The full
architecture can be seen in figure 5.3

Figure 5.3: Final transformer architecture.

5.3. GRU
Our GRU architecture is based on a public notebook:

https://www.kaggle.com/code/werus23/sleep-critical-point-infer
This consists of multiple repetitions of a so-called ResidualBiGRU block, ending with a dense layer and
an activation. This was named after the residual connection through addition at the end of each block,
and the bidirectional GRU. We adapted this with three changes, the network can be seen below:

Figure 5.4: MultiResidualBiGRU, with added dropout layers

The first change was the addition of dropout layers, dropout of 30% to 60% was used. This initially
lowered the performance, but when paired with an increased architecture size gave a smoother validation
loss and converged to a better score.

Secondly, we noticed that models would often converge to a local minimum early on, which is where
it would predict all zeroes across the timeline. This is due to the events being very sparse. A model can
easily predict all zeroes by giving a negative result, then passing it through an activation that maps
negative values to zero. In this flat output range of the activation, the derivative is zero and the model
cannot learn anymore, as gradient descent has no direction to go. These activations, like Relu and Gelu
were useful later on in the training process, but made it easy to get the model stuck at this hurdle. So,
an activation delay was added for the last layer, which forced the model to use a linear activation at the
start, ensuring that it learns to not predict only negative values. Later, after e.g. 15 epochs, the activation
is turned on, allowing better fine-tuning.

Lastly, we used shrinkage loss, which gives more weight to samples with a higher label value (the
events), this performed better than MSE or MAE.

5.4. Spectrogram
This model is based on:

https://github.com/tubo213/kaggle-child-mind-institute-detect-sleep-states/tree/main
https://www.kaggle.com/code/werus23/sleep-critical-point-train

The GRU model is the same model used in the critical point notebook with tuned hyper-parameters.
The original spectrogram model, as the name suggests, creates a spectrogram from the time series data.
Then uses a pre-trained resnet34 model to encode the images. Lastly there is a CNN based decoder
with 3 output channels that outputs event predictions and a state prediction (awake or not awake) per
timestep (see fig 5.5). The model made in this codebase was not optimized in the least and did not even

https://www.kaggle.com/code/werus23/sleep-critical-point-infer
https://github.com/tubo213/kaggle-child-mind-institute-detect-sleep-states/tree/main
https://www.kaggle.com/code/werus23/sleep-critical-point-train
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train on the full dataset for submmission. However it did get a better score than our best submissions so
the architecture was copied over to work with our pipeline.

Figure 5.5: Initial Spectrogram Architecture

After copying the model we were still not getting better scores than the public model. However
after we started to make multiple predictions per window our local scores jumped to 0.75-0.76 with
the spectrogram model. At one point this was our best scoring model but work done on other models
(mainly GRU) and feature engineering, the GRU models outperformed the spectrogram model.

At this point the spectrogram model hit a plateau. Since some of the features that were made as
a result of feature engineering were state information (altitude, azimuth) and not necessarily time
series information they did not bring any meaningful information to the model. Because of this a new
architecture was made to use the GRU model as a decoder with residual features and where only select
features would be passed to the spectrogram and encoder layers (see fig 5.6).

Figure 5.6: Final Spectrogram Architecture

However this model could not outperform the original GRU model with the new features and it
looked like the GRU model was not well suited for decoding the encoded spectrogram features. At the
end a final architecture was made that utilized both the original decoder and residual features with the
GRU model which ended up giving the best results (see figure 5.7).

Figure 5.7: Final Spectrogram Architecture

It was quite tricky to get this model to preform very well. Even though we had a model with 0.78
score locally after retraining with the same parameters the results could not be reproduced and it
seemed like the model was too dependent on the random initialization. However less than 2 days before
the deadline we created a sweep to try out different seeds and with this we were able to find a seed that
again resulted in a 0.78 local score. In the last day this model was retrained (now with a fixed seed)
with 5 fold cross validation and ended up giving the highest CV score we had (This was also the first
time this model was cross validated since every fold took over an hour of training). This model was
retrained on the complete dataset (now with fixed seed) and was included in our last submission. This
submission ended up giving us our best public score.



6
Strategic Approaches

6.1. Regression
For regression, the model predicts two numbers per window which are the steps at which onset

and wakeup events happen. At first, it seemed like a good approach but in practice yielded very poor
results. Additionally, with the way scoring worked using confidence, it penalised a wrong prediction
even more by having a confidence of 1. Lastly, it limited the models to make 1 prediction for each event
per window which we later found makes the score worse.

6.2. State Segmentation
Our first (successful) approach was to treat the problem like a state segmentation task where we

classified each step with the current state of the person, awake or asleep. State segmentation model
outputs were then converted to event predictions using standard algorithms and signal processing
(no ML) to figure out at what step an event occurs. However when the critical point notebook was
released the event segmentation approach outperformed this approach and this approach was no longer
pursued.

Figure 6.1: One series shown with hues of its state labels. 0 means asleep, 1 means awake, 2 means NaN and 3 means unlabelled
(4.2.3). Note the jumping lines are caused by seaborn plot artifacts

6.3. Event Segmentation
This approach, inspired by the critical point notebook, instead of predicting the current state aimed

to predict at which timestep an event occurred by fitting a gaussian curve to the events, effectively
making this a regression problem where the model would learn to fit this smooth curve with the peak at

16
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the timestep of the events. In our approach instead of a gaussian curve, our labels were made to reflect
the scoring metric by creating a blocky curve where the blocks represented the scoring metric. For +-12
steps away from the event the block has a height of 1 and from 12-36 height of 0.9 and so on (In the end
making the windows half as big as the original scoring metric windows improved our score). However
it was still tricky for the model to learn the sharp changes in the labels which is why the labels were also
smoothed out with a gaussian filter.

Figure 6.2: Blocky event segmentation labels

Figure 6.3: Smooth event segmentation labels

Since we had already tried and approach of regression calling this method regression would make it
confusing. For that reason this method is called event segmentation.

6.4. Event and State Segmentation
Using both event segmentation and state segmentation approaches by making the models predict

both events and current states and using a weighted loss between one hot encoded awake state
predictions (awake, asleep or NaN) and the event labels. This approach did not give improvements to
most models but the spectrogram model did improve with it. In the end only the spectrogram model
used this approach.



7
On the Slopes of Success

7.1. Loss
There were many loss functions tested during the competition. The loss functions used and their

performances for the event segmentation approach are explained in this section.

7.1.1. Mean Squared Error
Mean squared error is the most commonly used loss function for regression tasks. Since the event

segmentation approach turned the problem in to a regression problem this loss worked quite well.
However the models that trained with shrinkage loss outperformed ones trained on MSE loss and MSE
was not used in the later stages of development.

7.1.2. Mean Absolute Error
Mean absolute error, like mean squared error, is commonly used in regression tasks. However in the

early stages of development MAE was always underperforming in comparison to MSE and was not
used further.

7.1.3. Kullback-Leibler Divergence Loss
The Kullback-Leibler divergence is a metric used to compare two data distributions. It contrasts the

information contained in two probability distributions. Since our best approach was event segmentation
where our model aims to predict a Gaussian around the onset and wakeup events, we thought of using
this loss function for our models. During our hyperparameter tuning of our models, KL-Div loss was
seen multiple times in our best-winning CV scores, making it a suitable loss function for our models.

7.1.4. Shrinkage loss
Shrinkage loss aims to address challenges related to the vast search area around target objects. The

inclusion of a substantial background, surrounding target objects is crucial for providing valuable
context information that enhances the discriminative power of these objects. However, this approach
also introduces a significant number of easy samples from the background, leading to a large loss during
the learning process. The absolute difference, denoted as l, between the estimated probability p and its
corresponding soft label y is utilized to quantify the loss. To mitigate the impact of easy samples, the
conventional square loss is modified using a modulating factor, resulting in the proposed shrinkage loss
for regression learning. The modulating factor is shaped like a Sigmoid-like function and is applied to
re-weight the square loss, penalizing easy samples while keeping the loss from hard samples unchanged.
This strategy is designed to improve the tracking accuracy and accelerate the training speed. We found
this loss to work the best while training our models, with the fastest training speed and the best results.

7.1.5. Masking
Since there was a lot of unlabeled data in the train set which did not look the same as the NaN data,

we thought masking the loss for these steps would allow the model to train better as it does not get
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confused. From sweeping it turned out that it did not really matter whether the loss was masked or not,
although some models did have a preference for masking or not masking.

7.2. Early stopping
Early stopping is a method to ensure the final trained model is not overfitting. The model is saved if

it reaches a new minimum validation loss and training continues. If the validation loss starts to increase
and does not decrease after a specified number of epochs, the stored optimal model will be used instead.
In the last two weeks we have also used the validation score (score calculated on the validation set using
the scoring metric of the competition) for determining if we should early stop. This approach gave
better models for some architectures but worse models for others.

7.3. Learning Rate Scheduler
A learning rate scheduler is something that can change the learning rate for a model over epochs.

We first saw it being used with the critical point notebook and implemented in our pipeline. It is
generally accepted that learning rate should start high and slow down when converging. With the
Adam optimizer, this is already adaptively implemented, which is usually sufficient.

What can also be done however with schedulers however is resetting the learning rate to a high
value. This can be interpreted as giving the model a push out of the local minimum which it might have
converged to. Alternatively, it can be seen as retraining the model starting with a good initialization: a
warm start. We used a scheduler that’s implemented in Pytorch as CosineAnnealingWarmRestarts. For
certain models, this gave more consistent improvements than others. For the future, we could consider
also looking into schedulers that reset the learning rate on Plateau’s.

7.4. Adaptive Labels
One approach we tried to use was changing the labels for the model during training, making the

event labels more narrow over epochs. However since we only managed to implement this idea 2 days
before the deadline we could not find a proper set of parameters that lead to improvements on our
models.

The methodology was the following: With the help of a lookup table we identify the original value
of the label at a given width (the distance to the peak before downsampling). Then we figure out a
coefficient k such that at a specified number of epochs the original value of the label at the given width
will become equal to an epsilon value when taken to the power of k*current epoch. Even though this
approach worked on paper with downsampling the labels ended up being too narrow for the models to
learn anything meaningful. When setting the width to a larger value to accommodate for this issue the
coefficient k became smaller than 1 which made the labels less narrow (large values around the peak)
for some epochs which from previous experimenting is known to make the results worse.

𝑘 =
𝑙𝑜𝑔(𝑒𝑝𝑠)

𝑙𝑜𝑔(𝑦k) ∗ epochs to min
(7.1)

Where yk is the original value of the label at the given width before downsampling.

7.5. Cross Validation
To determine the quality of our models, we cross-validate each model. This means that we train a

model on one slice of our dataset and test it with the rest. We do this for 𝑘 folds and each fold uses
different slices of the dataset. The average score of each model gives us a good indication of how well
the model generalizes to new data and helps us prevent overfitting.

We initially used 80% of our training data (we already had a 80-20 split for train and test at this point)
for the train splits of the folds. In the last week we have used all of our train data for cross validation
and we ended up with better results.

7.6. Hyperparameter optimization
We used Weights and Biases to make finding the best settings for our model easier. We did this by

trying out different combinations of settings, called sweeps. This made our process more organized
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and helped us quickly figure out the best setup. After just a day of trying different combinations,
we consistently found the best settings for our model. We tested our model on all of our data using
cross-validation, which helped us make sure it worked well across the board. Despite these positive
outcomes, we realized that for future projects, we need to set things up even better when it comes to
tweaking model settings.



8
Polishing Perfection

8.1. Scoring metric
The scoring metric uses the are under the precision-recall curve. However what makes it complicated

is that a different curve is generated for 10 different tolerences (The allowed error to match a prediction
to an event) and for each different event type (onset and wake-up). The method ends up making 20
different precision recall curves and averages the area from all these curves are averaged.

To create the precision recall curve all the unique confidences from the predictions is iterated over
and in each iteration only predictions with confidences (probabilities) larger than that confidence are
considered for the matching to real events. For each confidence in this loop a precision recall point is
created, then at the end all these points are used to calculate the area under the precision recall curve
with rectangular blocks to approximate the area.

8.2. Tricks
8.2.1. Sinc interpolation

Since we use downsampling for our features to get back the original dimensionality of our outputs
we need to upsample our predictions. Instead of making convolution layers for upsampling the data we
ended up using standard interpolation methods in postprocessing instead. We initially tried simply
repeating the datapoints to get an upsampled signal but this was not optimal. After trying ideas like
linear interpolation we ended up using sinc interpolation. This method, under certain assumptions,
results in a theoretically perfect reconstruction of a sampled signal. We tried to use the interpolation
for both the median downsampled (taking the median value of every 12 steps) and subsampled (1st
value in every 12 steps). Even though the interpolation resulted in more accurate reconstruction with
subsampling the median downsampling method seemed to give better results with an offset (see 8.2.3)
and it was used in the end.

8.2.2. Threshold
We have experimented with only including predictions with confidences larger than a set threshold.

It did not make an improvement on our score and we ended up not using a threshold larger than 0.

8.2.3. Offset
In our submissions, we noticed that when we give a positive offset to our predicted steps it drastically

improved our score. As discussed in 4.3.1 our downsampled labels seemed to be skewed to the left
when compared to subsampling the data by taking the 1st item from every 12 points. (see 4.1). By
adding a positive offset to the steps of our predictions we were able to correct for the skew in our model
predictions (since the model was trained on skewed labels the predictions were also skewed) and get a
better score.
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Figure 8.1: Comparison of different label downsampling methods when upsampled again using sinc interpolation. The red curve
is the medain downsampled labels interpolated. The purple curve is the sinc interpolated subsampled labels. The orange (under

the purple curve, very hard to see) is the original labels that were downsampled.

8.2.4. Find peaks
The find peaks postprocessing step was one of the largest improvements that we made causing a

massive jump on the leaderboard. It increased our scores by around +0.05-0.06 just by adding this
postprocessing step. We figured out that we could make multiple predictions in a day without getting
our score penalized. Our best event segmentation models output 2 channels, one with confidences
of onset and one with confidences with wakeups. From these channels, we can take multiple peaks
which means the steps where our model thinks it is most likely that there is an event happening. Before
applying this, we would take the step with the highest confidence. But by adding this find peaks method
we could take multiple peaks of our channel. For this, we used the scipy 𝑓 𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠 method, and after
some hyperparameter tuning we found out that taking 10 events per day with peaks of a 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of
100 with a 𝑤𝑖𝑑𝑡ℎ of 24 gave us the highest scores.

8.3. Ensembling
For our final submission we made an ensemble of multiple models by combining their outputs using

confidence averaging. For our final ensemble we used a combination of all models mentioned in this
report except for Unet (our scores were much lower with Unet compared to the rest of our models) with
various features. To see exactly which models we used in an ensemble and what hyper-parameters and
features each of these models used please refer to our public notebook
https://www.kaggle.com/code/schobbejak/cmi-submission-team-epoch and refer to our Github
repo where the models are explained in detail
https://github.com/TeamEpochGithub/cmi-detect-sleep-states

https://www.kaggle.com/code/schobbejak/cmi-submission-team-epoch
https://github.com/TeamEpochGithub/cmi-detect-sleep-states


9
Parting Thoughts

When the competition was over we were in 12𝑡ℎ place in the public leaderboard. However we went
down to 23𝑟𝑑 place. Looking at the private leaderboard scores of everyone we believe that the private
leaderboard has a higher percentage of clean data (data with no NaN/unlabelled steps) compared to
the public leaderboard (Our private score is also much more similar to our local clean scores, ie. score
on data without NaNs). This also explains why we were placed so high in the public leaderboard. Our
model was better at handling not clean series compared to the people who were below us in the public
leaderboard which is why we were on a higher rank, but other peoples models were better at handling
clean series compared to us and that reflected on our private rank.

9.1. The winning playbook
The winning solution that have been made public at the time of writing are different combinations

of GRUs, Transformers, CNNs and LGBM models and post-processing techniques. See:
https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/
459715https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/
459627https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/
459599https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/
459597https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/
459604

Our deep learning approaches are quite similar to what the people at the top of the leaderboard is
using. We also used some of the post-processing steps that were used like similarity-NaN (the people
that used it called it something else) and including multiple predictions per window.

9.2. In hindsight
We spent the first 4 to 6 weeks of the competition mainly focusing on creating our own pipeline

and not making many submissions. This pipeline did end up being very useful and we could develop
individual models quite quickly once it was done. But once we started making more models we rewrote
a lot of code to make models more scalable using a model base class. With this change it was a lot easier
to work with different models since only the base class needed to be changed if you wanted to change
something with the models.

However once we wanted to work on ensembling models and cross validation a lot of the code had
to be rewritten multiple times. Cross validation took over a week to get working and once we wanted
to use ensembling it had problems with the way cross validation worked which made our code very
messy at the end. This made us lose quite a bit of time on coding instead of making new models.

Even after getting cross validation to work we only took the cross validation results of individual
models outside of sweeps in to account towards the end of the competition. Seeing the results at the
time of writing we should have prioritized cross validation much earlier.

For the spectrogram models making submissions was especially difficult because the code used
packages that were not on Kaggle. We got around it by including the packages in our source code folder
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and changing all imports to read files from inside the source code. This did work at the end but it took
some time and made our codebase even messier by the end of it.

Probably the most important thing we should avoid in future competitions is to make non-
deterministic experiments. We tried different approaches but we did not set the seed for the comparison
of with and without said change which gave us totally different models. This meant that the changes we
got could easily be a result of random initialization and not our addition or removal of new features (We
could only notice very large improvements and smaller improvements could not be distinguished from
the influence of the random initialization). We have now figured out how to get deterministic results
using PyTorch (torch.manual_seed() is not enough) and will make proper experiments in the future.

9.3. The road not taken
One of the things that we found out only after we had made our own pipeline that there already is

an scikit-learn pipeline. We had already started developing models by this point but it is definitely a
consideration to use it for our future competitions.
After reading Rob Mulla’s comment to this post, it is clear that we should not always trust the public
leaderboard score. He concluded that the public scores dataset had very noisy labels because their CV
scores were much higher than their public score (even with their worst fold score) when their validation
split was using a larger dataset than the public score. With this conclusion they completely ignored the
public leaderboard score and focused on their CV score. This way they ended up in 7𝑡ℎ place in the
private leaderboard. With our submissions we had also noticed that our submissions scored lower than
our CV scores but we were not able to come to that conclusion and kept trying to improve our public
leaderboard score (We did not necessarily overfit on the public score but our private score increase was
not as large as the public one).

Here is a list of roads we missed out on:

• Use data augmentation techniques such as selecting random windows from our data or reversing
the time series to effectively have a dataset that is twice as big.

• Use multiple ensemble techniques such as WBF and NMS instead of only trying averaging
confidences.

• Really look more at postprocessing with such a scoring metric, there was more to win there. We
could have looked at reranking scores.

• We have not tried using neural networks to upsample our downsampled labels. We trained our
models to predict downsampled labels and used sinc interpolation to upsample the outputs back.
We could have tried using upConv layers instead.

https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/459598#2551115
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